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Dynamic realization of transport phenomenon in finite system
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Exploring the Fokker-Planck or Langevin type transport equation from the underlying dynamics, we study
by exploiting the numerical simulations whether or not one may expect dissipative motions in a Hamilton
system with finite degrees of freedom without introducing any statistical concept. It will be shown that the
macro-level transport phenomenon in a finite system can bedynamicallyestablished from the underlying
Hamilton system, and the nonlinear coupling between two subsystems is decisive for generating the transport
phenomenon.
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I. INTRODUCTION

The Fokker-Planck or Langevin type equations have b
widely applied to the macroscopic averaged motion in
vast fields of contemporary science. The evolution of
early universe, that of the chemical reaction, many ac
processes in the biological system, the fission and fus
processes in the nuclear system, and the measurement t
are typical examples among others. Although these proce
have been described successfully by the phenomenolo
transport equation, there still remain some basic proble
such as how to derive it from the fundamental level dyna
ics, how the statistical state is realized in the irrelevant s
system, and why the irreversible macro-level process is g
erated as a result of the reversible micro-level dynam
Several papers on this subject@1–15# have been published.

In many approaches@10,12,13#, however, a division be-
tween the relevant and irrelevant degrees of freedom is m
by hand, and the relevant system is assumed to belinearly
coupled with the irrelevant reservoir. As is well known, t
theoretical difficulties in deriving the irreversible process a
drastically reduced, when the linear response theory~LRT! is
adopted together with the irrelevant reservoir. From the m
roscopic point of view, such a statistical approach seem
be reasonable for the infinite system. In such an isola
finite many-body quantum system as the nucleus where
sumption of a large number of degrees of freedom is
justified, and in a case when one intends to derive the p
nomenological transport equation from the fundamental le
dynamics, it is not obvious whether or not one may introdu
the reservoir for the irrelevant degrees of freedom, a
whether the total system is divided into the relevant a
irrelevant degrees of freedom by leaving a resultantlinear
coupling between them.

To get a full understanding of the dynamical realization
the statistical state in a finite system, in our previous pa
@8# an evolution process of a simple two-degrees of freed
system has been studied by using a general microsc
transport theory@7,9,16#. It has been shown that the nonlin
ear coupling between different degrees of freedom resp
sible for generating a chaotic motion plays an important r
in realizing a statistical state for a system described b
1063-651X/2001/63~2!/021116~14!/$15.00 63 0211
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bundle of trajectories. It has also been pointed out that
response function shows quite different behavior from
well known linear coupling case, when two systems a
coupled with a nonlinear interaction. The above system w
two degrees of freedom is too simple to assign the relev
degree of freedom or to discuss its dissipation, because
chaotic or statistical state can be realized by a system wit
least two degrees of freedom. In order to study the diss
tion process microscopically, it is inevitable to treat a syst
with more than two degrees of freedom, which is able to
divided into two weakly coupled subsystems: one is co
posed of at least two degrees of freedom and is regarde
an irrelevant system, whereas the rest are considered to
relevant system.

The main objective of this paper is to study one step f
ther how and why the dissipative process phenomenol
cally described by the Langevin type equation is realized
a result of the underlying dynamics, what kinds of necess
conditions there are in realizing the dissipative process, w
kinds of dynamical relations there are between the mic
level and phenomenological-level descriptions, and whet
the linear and nonlinear couplings between the relevant
irrelevant systems generate some substantial difference
the dissipation mechanism, by using specific model Ham
tonians. In Sec. II, we briefly recapitulate the theory of t
nuclear coupled-master equation@9# for the sake of selfcon-
tainment. Starting from the most general coupled-mas
equation, we try to derive the Fokker-Planck and Lange
type equation, by clarifying necessary underlying conditio
Our purpose is to realize such a physical situation wh
these conditions are satisfied; in Sect. III, various numer
simulations will be performed for a system where a relev
~collective! harmonic oscillator is coupled with the irreleva
~intrinsic! SU~3! model. After numerically realizing a macro
level transport phenomena, we will try to reproduce it
using a phenomenological Langevin equation, whose po
tial is derived microscopically. By using theb Fermi-Pasta-
Ulam (b-FPU! model Hamiltonian, we will further explore
how different transport phenomena will appear when the t
systems are coupled with linear or nonlinear interactio
Sec. IV is devoted to a summary and discussions.
©2001 The American Physical Society16-1
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II. TRANSPORT EQUATION OF COLLECTIVE MOTION

A. Nuclear coupled master equation

Exploring the microscopic theory of nuclear larg
amplitude collective dissipative motion, whose characteri
energy per nucleon is much smaller than the Fermi ene
one may start with the time-dependent Hartree-Fock~TDHF!
theory. Since the basic equation of the TDHF theory
known to be formally equivalent to the classical canoni
equations of motion@17#, the use of the TDHF theory en
ables us to investigate the basic ingredients of the nonlin
nuclear dynamics in terms of the TDHF trajectories. T
TDHF equation is expressed as

d^F~ t !uS i
]

]t
2Ĥ D uF~ t !&50, ~1!

whereuF(t)& is the general time-dependent single Slater
terminant given by

uF~ t !&5exp$ i F̂ %uF0.eiE0t,

i F̂ 5(
m i

$ f m i~ t !âm
† b̂i

†2 f m i* ~ t !b̂i âm%, ~2!

where uF0& denotes a HF stationary state, andâm
† (m

51,2, . . . ,m) and b̂i
†( i 51,2, . . . ,n) mean the particle- and

hole-creation operators with respect touF0&. The HF Hamil-
tonianH and the HF energyE0 are defined as

H5^F~ t !uĤuF~ t !&2E0 , E05^F0uĤuF0&. ~3!

With the aid of the self-consistent collective coordina
~SCC! method@18#, the whole system can be optimally d
vided into the relevant~collective! and irrelevant~intrinsic!
degrees of freedom by introducing an optimal canonical
ordinate system called the dynamical canonical coordin
~DCC! system for a given trajectory. That is, the total clos
systemh % j is dynamically divided into two subsystemsh
and j, whose optimal coordinate systems are expresse
ha , ha* :a51,••• and ja , ja* :a51,•••, respectively. The
resulting Hamiltonian in the DCC system is expressed a

H5Hh1Hj1Hcoupl, ~4!

whereHh depends on the relevant,Hj on the irrelevant, and
Hcoupl on both the relevant and irrelevant variables. T
TDHF equation~1! can then be formally expressed as a
of canonical equations of motion in the classical mechan
in the TDHF phase space~symplectic manifold! as

i ḣa5
]H

]ha*
, i ḣa* 52

]H

]ha
, i j̇a5

]H

]ja*
, i j̇a* 52

]H

]ja
.

~5!

Here, it is worth noting that the SCC method defines
DCC system in order to eliminate thelinear coupling be-
tween the relevant and irrelevant subsystems, i.e., the m
mal decoupling condition@9# given by
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]Hcoupl

]h U
j5j* 50

50 ~6!

is satisfied. This separation in the degrees of freedom
turn out to be very important for exploring the energy dis
pation process and nonlinear dynamics between the co
tive and intrinsic modes of motion.

The transport, dissipative, and damping phenomena
pearing in the nuclear system may involve dynamics
scribed by the wave packet rather than that by the eigens
Within the mean-field approximation, these phenomena m
be expressed by the collective behavior of the ensembl
TDHF trajectories, rather than the single trajectory. A diffe
ence between the dynamics described by the single trajec
and by the bundle of trajectories might be related to
controversy on the effects of one-body and two-body dis
pations.

To deal with the ensemble of TDHF trajectories, we st
with the Liouville equation for the distribution function

ṙ~ t !52 iLr~ t !, L* [ i $H,* %PB,

r~ t !5r~h~ t !,h~ t !* ,j~ t !,j~ t !* !, ~7!

which is equivalent to TDHF equation~1!. Here the symbol
$%PB denotes the Poisson bracket. Since we are intereste
the time evolution of the bundle of TDHF trajectories, who
bulk properties ought to be expressed by the relevant v
ables alone, we introduce the reduced distribution functi
as

rh~ t !5Trj r~ t !, rj~ t !5Trh r~ t !. ~8!

Here, the total distribution functionr(t) is normalized so as
to satisfy the relation

Tr r~ t !51, ~9!

where

Tr[Trh Trj , Trh[)
a
E E dha dha* ,

Trj[)
a

E E dja dja* . ~10!

With the aid of the reduced distribution functionsrh(t) and
rj(t), one may decompose the Hamiltonian in Eq.~4! into
the form

H5Hh1Hj1Hcoupl

5Hh1Hh~ t !1Hj1Hj~ t !1HD~ t !2E0~ t !,

Hh~ t ![Trj Hcouplrj~ t !, Hj~ t ![Trh Hcouplrh~ t !,
~11!

Haver~ t ![Hh~ t !1Hj~ t !, E0~ t ![Tr Hcouplr~ t !,

HD~ t ![Hcoupl2Haver~ t !1E0~ t !.
6-2
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By exploiting the time-dependent projection operator meth
@19#, one may decompose the distribution function into
separable part and a correlated one as

r~ t !5rs~ t !1rc~ t !,

rs~ t ![P~ t !r~ t !5rh~ t !rj~ t !, rc~ t ![~12P~ t !!r~ t !,
~12!

whereP(t) is the time-dependent projection operator defin
by

P~ t ![rh~ t !Trh1rj~ t !Trj2rh~ t !rj~ t !Trh Trj . ~13!

From the Liouville equation~7!, one gets

ṙs~ t !52 iP~ t !Lrs~ t !2 iP~ t !Lrc~ t !, ~14!

ṙc~ t !52 i „12P~ t !…Lrs~ t !2 i „12P~ t !…Lrc~ t !. ~15!

By introducing

g~ t,t8![T expH 2 i E
t8

t

@12P~t!#LdtJ , ~16!

whereT denotes the time ordering operator, one obtains
master equation forrs(t) as

ṙs~ t !52 iP~ t !Lrs~ t !2 iP~ t !Lg~ t,t I !rc~ t I !

2E
t I

t

dt8P~ t !Lg~ t,t8!$12P~ t8!%Lrs~ t8!, ~17!

where t I stands for an initial time. As is easily proved, th
Liouvillian L appearing inside the time integration in E
~17! is replaced byLcoupl defined byLcoupl* 5$Hcoupl,* %PB.
Expressingrs(t) andP(t) in terms ofrh(t) andrj(t), and
operating Trh and Trj in Eq. ~17!, one obtains a coupled
master equation

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !

2 i Trj@Lh1Lcoupl#g~ t,t I !rc~ t I !

2E
t I

t

dt Trj LD~ t !g~ t,t!LD~t!rh~t!rj~t!,

~18!

ṙj~ t !52 i @Lj1Lj~ t !#rj~ t !2 i Trh@Lj1Lcoupl#g~ t,t I !rc~ t I !

2E
t I

t

dt Trh LD~ t !g~ t,t!LD~t!rh~t!rj~t!,

whereLD(t)* [$HD(t),* %PB. The coupled master equatio
~18! is still equivalent to the original Liouville equation~7!
and is not yet tractable.

B. Dynamical response and correlation functions

As was discussed in Ref.@8#, a bundle of trajectories eve
in the two degrees of freedom system may reach a statis
02111
d

d
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object. In this case, it is reasonable to assume that the ef
on the relevant system coming from the irrelevant one
mainly expressed by an averaged effect over the irrelev
distribution function~Assumption!. Namely, the effects due
to the fluctuation partHD(t) are assumed to be much small
than those coming fromHaver(t). Under this assumption, on
may introduce themean-fieldpropagator

gmf~ t,t8!5T expH 2 i E
t8

t

@12P~t!#L mf~t!dtJ ,

L mf~ t !5L h
mf~ t !1L j

mf~ t !, L h
mf~ t ![Lh1Lh~ t !,

Lj
mf~ t ![Lj1Lj~ t !, ~19!

which describes the major time evolution of the syste
while the fluctuation part is regarded as a perturbation.
further introducing the following propagators given by

Gmf~ t,t8![T expH 2 i E
t8

t

L mf~t!dtJ 5Gh~ t,t8!Gj~ t,t8!,

Gh~ t,t8![T expH 2 i E
t8

t

L h
mf~t!dtJ ,

Gj~ t,t8![T expH 2 i E
t8

t

L j
mf~t!dtJ , ~20!

one may prove that there is a relation

gmf~ t,t!LD~t!rh~t!rj~t!5Gmf~ t,t!LD~t!rh~t!rj~t!.
~21!

The coupling interaction is generally expressed as

Hcoupl~h,j!5(
l

Al~h!Bl~j!. ~22!

For simplicity, we hereafter discard the summationl in the
coupling. By introducing the generalized two-time corre
tion and response functions, which have been calleddynami-
cal correlation and response functions in Ref.@7#, through

f~ t,t![Trj Gj~t,t !B~B2^B& t!rj~t!, ~23!

x~ t,t![Trj$Gj~t,t !B,B%PBrj~t!, ~24!

with ^B& t[TrjBrj(t), the master equation in Eq.~18! for the
relevant degree of freedom is expressed as

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !2 i Trj@Lh1Lcoupl#g~ t,t I !

3rc~ t I !1E
0

t2t I
dtx~ t,t2t!$A,Gh~ t,t2t!

3~A2^A& t2t!rh~ t2t!%PB1E
0

t2t I
dtf~ t,t2t!

3ˆA,Gh~ t,t2t!$A,rh~ t2t!%PB‰PB, ~25!
6-3
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with ^A& t[Trh Arh(t). Here, it should be noted that th
whole system is developed exactly up tot I . In order to make
Eq. ~25! applicable,t I should be taken to be very close to
time when the irrelevant system approaches very near t
stationary state~i.e., the irrelevant system is very near to t
statistical state where one may safely make the assumptio
be stated in next Sec. II C!. In order to analyze what happen
in the microscopic system, which is situated far from
stationary states, one has to studyx(t I ,t I2t) and f(t I ,t I
2t) by changingt I . Since bothx(t I ,t I2t) and f(t I ,t I
2t) are strongly dependent ont I , it is not easy to explore
the dynamical evolution of the system far from the station
state. Therefore, to make Eq.~25! applicable, we will exploit
the further assumptions.

C. Macroscopic transport equation

In this subsection, we discuss how the macroscopic tra
port equation is obtained from the fully microscopic mas
equation ~25! by clearly itemizing necessary microscop
conditions.

Condition I. Suppose the relevant distribution functio
rh(t2t) inside the time integration in Eq.~25! evolves
through the mean-field HamiltonianHh1Hh(t)1. Namely,
rh(t2t) inside the integration is assumed to be expresse
rh(t)5Gh(t,t2t)rh(t2t), so that Eq.~25! is reduced to

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !2 i Trj@Lh1Lcoupl#g~ t,t I !

3rc~ t I !1E
0

t2t I
dtx~ t,t2t!$A,Gh~ t,t2t!

3~A2^A& t2t!•rh~ t !%PB1E
0

t2t I
dtf~ t,t

2t!ˆA,$Gh~ t,t2t!A,rh~ t !%PB‰PB. ~26!

This condition is equivalent to theAssumptiondiscussed in
the previous subsection, because the fluctuation effects
sufficiently small and are able to be treated as a perturba
around the path generated by the mean-field Hamilton
Hh1Hh(t), and are sufficient to be retained in Eq.~26! up to
the second order.

Condition II. Suppose the irrelevant distribution functio
rj(t) has already reached its time-independent station
staterj(t0). According to our previous paper@8#, this situa-
tion is able to be realized even in the two-degrees of freed
system. Under this assumption, the relevant mean-field L
villian Lh1Lh(t) becomes a time independent object. Und
the same assumption, a time ordered integration inGh(t,t8)
defined in Eq.~20! is performed and one may introduce

Gh~ t,t2t!'Gh~t![exp$2 iLh
mft%, L h

mf[Lh1Lh~ t0!,
~27!

1The same assumption has been introduced in a case of the l
coupling @13#.
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where t0 denotes a time when the irrelevant system h
reached its stationary state.

Condition III. Suppose the irrelevant time scale is mu
shorter than the relevant time scale. Under this assump
the responsex(t,t2t) and correlation functionsf(t,t2t)
are regarded as being independent of the timet, becauset in
Eq. ~26! is regarded as describing a very slow time evoluti
of the relevant motion. By introducing an approximate on
time response and correlation functions

x~t!'x~ t,t2t!, f~t!'f~ t,t2t!, ~28!

one may get

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !2 i Trj@Lh1Lcoupl#g~ t,t I !

3rc~ t I !1E
0

`

dtx~t!$A,exp~2 iL h
mft!

3~A2^A& t2t!rh~ t !%PB1E
0

`

dtf~t!

3ˆA,$exp~2 iL h
mft!A,rh~ t !%PB‰PB. ~29!

Here it should be noted that such one-time response
correlation functions are still different from the usual on
introduced in the LRT where the concepts of linear coupl
and of heat bath are adopted. Under the same assump
the upper limit of the integrationt2t I in Eq. ~29! can be
extended to the infinity, because thex(t) andf(t) are as-
sumed to be very fast damping functions when it is measu
in the relevant time scale.

Here, one may introduce the susceptibilityz(t)

z~ t !5E
0

t

dtx~t!, z~0!50. ~30!

Defining z[z(`), one may further introduce another dy
namical functionc(t):

z~ t !5@12c~ t !#z, with c~0!51, c~`!50, ~31!

which satisfies the following relation:

x~ t !5
]z~ t !

]t
52z

]c~ t !

]t
. ~32!

Inserting Eq.~32! into Eq. ~29! and integrating by part, one
gets

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !2 i Trj@Lh1Lcoupl#g~ t,t I !

3rc~ t I !1z$A,~A2^A& t!rh~ t !%PB1zE
0

`

dtc~t!

3H A,
d

dt
@exp~2 iL h

mft!~A2^A& t!#rh~ t !J
PB

1E
0

`

dtf~t!ˆA,$exp~2 iL h
mft!A,rh~ t !%PB‰PB.

~33!
ear
6-4
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This equation is a Fokker-Planck type equation. The fi
term on the right-hand side of Eq.~33! represents the contri
butions from the mean-field part, and the second term a c
tribution from the correlated part of the distribution functio
at time t I . The last three terms represent contributions fr
the dynamical fluctuation effectsHD . The friction as well as
fluctuation terms are supposed to emerge as a result of t
three terms. We will discuss the role of each term with o
numerical simulation in Sec. III.

At the end of this subsection, let us discuss how to obt
the Langevin equation from our fully microscopic coupl
master equation, because it has been regarded as a fina
of the microscopic or dynamical approaches to justify
phenomenological approaches. For the sake of simplicity
us discuss a case where the interaction between relevan
irrelevant degrees of freedom has the following linear for

Hcoupl5lQ(
i

qi ,

i.e.,

A5AlQ, B5Al(
i

qi ,

Q5
1

A2
~h1h* !, P5

i

A2
~h* 2h!,

qi5
1

A2
~j i1j i* !, pi5

i

A2
~j i* 2j i !. ~34!

Here we assume that the relevant system consists of
degree of freedom described byP,Q. Even though we apply
the linear coupling form, the generalization for the case w
more general nonlinear coupling is straightforward. In ord
to evaluate Eq.~33!, one has to calculate

Q~t!5exp~2 iL h
mft!Q, ~35!

whereQ(t) is a phase space image ofQ through the back-
ward evolution. Thus the Poisson bracket$Q(t),rh(t)%PB in
Eq. ~33! is expressed as

$Q~t!,rh~ t !%PB5
]Q~t!

]Q

]rh~ t !

]P
2

]Q~t!

]P

]rh~ t !

]Q
.

~36!

By introducing the following quantities:

a1~P,Q![lE
0

`

dtf~t!
]Q~t!

]Q
,

a2~P,Q![2lE
0

`

dtf~t!
]Q~t!

]P
,

b~P,Q![lzE
0

`

dtc~t!
]Q~t!

]t
, ~37!
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Eq. ~33! is reduced to

ṙh~ t !52 i Trj@Lh1Lcoupl#g~ t,t I !rc~ t I !

1H 2 i „Lh1Lh~ t !…1lz~Q2^Q& t!
]

]P

1
]

]P
b~P,Q!1

]

]P
a1~P,Q!

]

]P

1
]

]P
a2~P,Q!

]

]QJ rh~ t !. ~38!

As discussed in Ref.@12#, Eq. ~38! results in the Langevin
equation with a form

Q̈52
1

m

]U~Q!

]x
2gQ̇1 f ~ t ! ~39!

by introducing a concept of mechanical temperature. T
above derivation of the Langevin equation is still too form
to be applicable for the general cases. However it might
naturally expected that Conditions I, II, and III are met in t
actual dynamical processes.

III. DYNAMICAL SIMULATION ON NONLINEAR
NUCLEAR SYSTEM

A. Microscopic model

The system considered in our numerical calculation
composed of a collective degree of freedom coupled to
trinsic degrees of freedom through weak interaction, wh
simulates a nuclear system. The collective system describ
e.g., the giant resonance is represented by the harmonic
cillator given by

Hh~q,p!5
p2

2M
1

1

2
Mv2q2 ~40!

and the intrinsic system mimicking the hot nucleus is d
scribed by the modified SU~3! model Hamiltonian@20# given
by

Ĥ5(
i 50

2

e i K̂ i i 1
1

2 (
i 51

2

Vi$K̂ i0K̂ i01H.c.%;

K̂ i j 5 (
m51

N

Cim
† Cjm , ~41!

whereCim
† andCim represent the fermion creation and ann

hilation operators. There are threeN-fold degenerate levels
with e0,e1,e2. In the case with an evenN particle system,
the TDHF theory gives a classical Hamiltonian with tw
degrees of freedom as
6-5
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Hj~q1 ,p1 ,q2 ,p2!

5
1

2
~e12e0!~q1

21p1
2!1

1

2
V1~N21!~q1

22p1
2!

2
N21

4N
V1~q1

42p1
4!1

1

2
~e22e0!~q2

21p2
2!

1
1

2
V2~N21!~q2

22p2
2!2

N21

4N
V2~q2

42p2
4!

1
N21

4N
@2V1~q1

22p1
2!~q2

21p2
2!

2V2~q1
21p1

2!~q2
22p2

2!#. ~42!

In our numerical calculation, the parameters used areM
518.75, v2 50.0064,e050, e151, e252, N530, andVi
520.07. In this case, the collective time scaletcol charac-
terized by the harmonic oscillator in Eq.~40! and the intrin-
sic time scalet in characterized by the harmonic part of th
intrinsic Hamiltonian in Eq.~42! satisfies a relationtcol
;10t in .

For the coupling interaction, we use the following nonli
ear interaction given by

Hcoupl5l~q2q0!2(
i 51

2

$qi
21pi

2%. ~43!

A physical meaning of introducing a quantityq0 in Eq. ~43!
will be discussed at the end of this subsection as well as
next subsection.

In performing the numerical simulation, the time evol
tion of the distribution functionr(t) is evaluated by using
the pseudo-particle method as

r~ t !5
1

Np
(
n51

Np

)
i 51

2

d„qi2qi ,n~ t !…

3d„pi2pi ,n~ t !…d„q2qn~ t !…d„p2pn~ t !…, ~44!

where Np means the total number of pseudoparticles. T
collective coordinatesqn(t) and pn(t), and the intrinsic co-
ordinatesqi ,n(t) andpi ,n(t) determine a phase space point
the nth pseudo-particle at timet, whose time dependence
described by the canonical equations of motion given by

q̇i5
]H

]pi
, ṗi52

]H

]qi
, q̇5

]H

]p
, ṗ52

]H

]q
,

H[Hh~q,p!1Hj~q1 ,p1 ,q2 ,p2!1Hcoupl. ~45!

We use the fourth order Runge-Kutta method for integrat
the canonical equations of motion andNp is chosen to be
10 000. The initial condition for the intrinsic distributio
function is given by a uniform distribution in a tiny region o
the stochastic sea as stated in Ref.@8#. That for the collective
02111
e

e

g

distribution function is given by thed function centered at
q(0)50 andp(0), p(0) being defined by a given collectiv
energyEh together withq(0)50. The distribution function
in Eq. ~ 44! defines an ensemble of the system, each mem
of which is composed of a collective degree of freedo
coupled to a single intrinsic trajectory.

In our numerical simulation, the coupling interaction
not activated at an initial stage. In the beginning, the c
pling between the collective and intrinsic systems
switched off, and they evolve independently. Namely, t
collective system evolves regularly whereas, as discusse
Sec. III B, the intrinsic system tends to reach its tim
independent stationary state~chaotic object!. After the statis-
tical state has been realized in the intrinsic system, the c
pling interaction is activated. A quantityq0 in Eq. ~43!
denotes a value of the collective trajectoryq at the switch on
time. One purpose of introducingq0 is to insert the coupling
adiabatically, and to conserve the total energy before a
after the switch on time.~Hereafter,tsw denotes the momen
when the interaction is switched on, and in our numeri
calculationtsw is set to betsw512tcol.)

Here it is worth noting why we let the two systems evol
independently at the initial stage. As is well known, the
godic and irreversible property of the intrinsic system is
sumed in the conventional approach, and the intrinsic sys
for the infinite system is usually represented by the tim
independent canonical ensemble. In thefinite system, how-
ever, one has to explore whether or not the intrinsic sys
tends to reach such a state that is effectively replaced b
statistical object, how it evolves after the coupling intera
tion is switched on, and what its final state looks like.

As discussed at the end of Sec. II B, it is not easy to ap
Eq. ~25! for analyzing what happens in the dynamical micr
scopic system, which is in the general situation. Our pres
primary aim is to microscopically generate such a transp
phenomenon that might be understood in terms of the Lan
vin equation. Namely, we have to construct such a mic
scopic situation that seems to satisfy Conditions I, II, and
discussed in Sec. II C. In this context, we first let the intrin
system reach a chaotic situation in a dynamical way, until
ergodic and irreversible property are well realizeddynami-
cally. In the next subsection, it will be shown that the abo
microscopic situation is indeed realizeddynamicallyfor the
intrinsic system Eq.~42!.

Our attention is mainly focused on examining the ene
interchange between these two systems, and the final s
these two systems can reach and their interaction de
dence. For studying the energy interchange, we make
merical calculations for the following cases. The collecti
energy is much larger than, comparable to, and much sm
than the intrinsic energy. Namely, the collective energy
chosen to beEh520, 40 and 60, whereas the intrinsic e
ergy is fixed atEj540. HereEj540 is chosen, because th
phase space of the intrinsic system is almost covered by
chaotic sea at this energy. In order to examine the interac
dependence of the final state, the interaction strength par
eterl is chosen to be 0.005~relatively weak!, 0.01 and 0.02
~relatively strong!.
6-6
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FIG. 1. Time dependence of the averaged partial Hamiltonian^Hh&, ^Hj&, ^Hcoupl& and the total Hamiltonian̂H& for Eh540, Ej

540 and~a! l50.005;~b! l50.01; ~c! l50.02 and~d! l50.03. Solid line refers tôHh&; long dashed line refers tôHj&; short dashed
line refers to^Hcoupl& and dotted line refers tôH&. The abscissaT denotes a time in units oftcol which is a characteristic periodic time o
the collective oscillator.
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B. Energy interchange between the collective
and intrinsic systems

Figures 1~a!–1~d! show the time-dependent averaged v
ues of the partial Hamiltonian̂Hh&, ^Hj& and ^Hcoupl& and
the total Hamiltonian̂ H& defined through

^X&5E Xr~ t !dq dp)
i 51

2

dqi dpi , ~46!

for the case withEh540. One may see that the main chan
occurs in the collective energy as well as the interaction
ergy, but not in the intrinsic energy. When one precis
looks for the independent trajectories of the bundle, the c
lective, intrinsic and interaction energies of each traject
are changing in time in accordance with the usual Hamil
system. Since the intrinsic system has already reached s
stochastic state when the interaction is switched on, a t
dependence of the intrinsic energy for each trajectory is c
celed out when one takes an average over many traject
of the bundle. For a case with small interaction strengthl
50.005), the collective energy oscillates for a long time a
seems not to reach any saturated value. In the case of
tively large interaction strength (l;0.02), it will reach some
time-independent value.
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Figures 2~a! and 2~b! represent the numerical results fo
the cases withEh520 and 60, showing almost the sam
result as for the case forEh540. From the above numerica
simulation, one may see that the energy is dissipated f
the collective to an ‘‘environment,’’ when the intrinsic sys
tem and the coupling interaction are regarded as an envi
ment. Before understanding the above energy transfe
terms of the phenomenological Langevin equation, it is i
portant to microscopically explore what happens in the
trinsic system when the collective system is attached to
intrinsic system through the coupling interaction.

In Fig. 3, a time dependence of the variance of the intr
sic momentum̂ p1

2& is shown. The other intrinsic variance
^q1

2&, ^q2
2& and^p2

2& show almost the same time dependen
as in Fig. 3. As discussed in our previous paper@8#, an ap-
pearance of some chaotic state is expected when the vari
has reached its stationary value. Since the variance of
intrinsic system reaches some stationary value beforetsw and
since the intrinsic system is regarded as being in the cha
state, the coupling interaction is activated attsw in our simu-
lation. After tsw512tcol , its value remains almost the sam
for the small interaction strength case, and quickly reache
little bit larger stationary value for the large couplin
strength case (l50.02). This small increase corresponds to
6-7
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YAN, SAKATA, ZHUO, AND WU PHYSICAL REVIEW E 63 021116
slight enlargement of the chaotic sea in the intrinsic ph
space. Practically, the values of variances are regarded t
constant before and aftertsw.

From our numerical simulation, one may deduce suc
conclusion that the intrinsic system even with only two d
grees of freedom can be treated as a time independent s

FIG. 2. Time dependence of the averaged partial Hamilton
for: ~a! Eh520, Ej540, l50.02; ~b! Eh560, Ej540, l50.02.
Reference of lines and abscissaT is the same as in Fig. 1.

FIG. 3. Time-dependence of variance ofp1 ~defined as^p1
2

2^p1
2&&) for Eh540, Ej540 andl50.02. Coupling is switched on

at tsw512tcol . Reference of abscissaT is the same as in Fig. 1.
02111
e
be

a
-
tis-

tical object before and after the coupling interaction is ac
vated. This conclusion provides us with the dynamic
foundation for understanding the statistical ansatz adopte
the conventional transport theory, where the irrelevant s
tem is always regarded as a time-independent statistical
ject.

Since the variance has reached its stationary value sh
after tsw, it is reasonable to introduce the following tim
independent quantity:

^pi
21qi

2&5E )
i 51

2

dpi dqi$pi
21qi

2%r~ t !. ~47!

In accordance with the mean-field Liouvillian in Eq.~20!,
one may introduce thetime-independentcollective mean-
field Hamiltonian as

Hh1Hh~ t !u t.tsw

5
p2

2M
1

1

2
Mv0

2q21l~q2q0!2(
i 51

2

^pi
21qi

2&.

~48!

Except for the effects coming from the fluctuation pa
HD(t), the collective trajectory is supposed to be describ
by the mean-field Hamiltonian in Eq.~48! after the coupling
interaction is switched on. The solution of Eq.~48! is ex-
pressed as

q5A cosv~ t2tsw!, p52MvA sinv~ t2tsw!,
~49!

where

v25v0
21v1

2 , v1
2[

2l

M
^pi

21qi
2&, A5q0S v0

v D 2

,

~50!

the amplitudeA being fixed by using the initial condition
q(tsw)5q0 . In accordance with this initial condition, ther
holds the following energy conservation before and aftertsw
as

Hhu t5tsw205Hh1Hh~ t !u t5tsw105
M

2
q0

2v0
2 . ~51!

In order to understand an oscillating property of the c
lective energy observed in Figs. 1 and 2, let us substitute
solution in Eq. ~49! into the collective HamiltonianHh .
Then one gets

Hh5
M

2
q0

2v0
2H 124

v1
2v0

2

v4
sin4

v

2
~ t2tsw!J . ~52!

In Fig. 4, the numerical result of Eq.~52! is shown to-
gether with the exact simulated result. As is clearly reco
nized from Fig. 4 and Eq.~ 52!, the mean-field description
can well reproduce the oscillating property~the amplitude,
the central energy of the oscillation as well as the frequen!

n

6-8
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of the collective energŷHh&, whereas it cannot reproduce
reduction mechanism of the amplitude. That is the me
field Hamiltonian cannot describe the dissipation proce
More precisely, one may see that the mean-field approxi
tion provides us with decisive information on the followin
two points: ~a! the amplitudeA of the collective energy is
determined mainly by the coupling interaction strengthl as
well as the averaged properties of the intrinsic syst
^( i 51

2 pi
21qi

2&; ~b! the frequencyv is related with the char-
acteristic frequency of the collective oscillatorv0, the cou-
pling interaction strengthl and the averaged properties
intrinsic system^( i 51

2 pi
21qi

2&. From the above discussio
and from Figs. 1 and 2, the dissipation process should
attributed to the fluctuation effects coming fromHD .

Before discussing the microscopic dynamics respons
for the damping and diffusion process, let us apply the p
nomenological transport equation to our present simula
process. Let us suppose that the collective motion will
subject to both a friction force and a random force, and
be described by the Langevin equation. A simple Lange
equation is given by

Mq̈1
]Umf~q!

]q
1gq̇5 f ~ t !, ~53!

whereUmf(q) represents the potential part ofHh1Hh(t) in
Eq. ~48! and g the friction strength parameter. A functio
f (t) represents the random force and, in our calculation,
taken to be the Gaussian white noise characterized by
following moments:

^ f ~ t !&50, ^ f ~ t ! f ~s!&5kTd~ t2s!. ~54!

The numerical result for Eq.~53! is shown in Fig. 5 with the
parametersg50.0033 andkT51.45. The parameters ap
pearing inUmf(q) are the same as in Fig. 1~c!.

FIG. 4. Time dependence of average collective energy~dashed
line! Hh in Eq. ~52!, in which the mean-field energy of the couplin
interaction is considered as shown in Eq.~48!, together with the
exact simulated result~solid line!. Parameters used in the mea
field potential are the same as in Fig. 1~c!. Reference of abscissaT
is the same as Fig. 1.
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As is understood from Fig. 5, the Langevin equation
produces the energy transfer from the collective system
the environment quite well. This means that our dynami
simulation shown in Fig. 1 is satisfactorily linked with th
conventional transport equation, and our schematic mo
Hamiltonian introduced by Eqs.~40!, ~42! and ~43! is suc-
cessfully considered as a dynamicalanalogueof the Brown-
ian particle coupled with the classical statistical syste
Based on the above analogy and on Eqs.~33! and ~53!, one
may learn the collective degree of freedom is subject to b
an average force coming from the mean-field Hamiltonian
Eq. ~48! and the fluctuation termHD . Namely, the fluctua-
tion HD described by the last three terms on the right ha
side of Eq.~33! is responsible for not only the damping o
the oscillation amplitude but also for the dissipative ene
flow from the collective system to the environment.

At the end of this subsection, it should be noted that o
choice of g and kT does not satisfy the fluctuation
dissipation theorem. This means that our simulated diss
tive phenomenon is not the same as the usual damping
nomena described within the LRT. Since our simulat
dissipation phenomenon is induced not by the linear c
pling but by the nonlinear coupling, there still remain inte
esting questions for comprehensively understanding the m
roscopic transport phenomena.

C. Microscopic origin of damping and diffusion mechanism

In the Langevin equation, there are two important forc
the friction force and the random force. The former describ
the average effect on the collective degree of freedom ca
ing an irreversible dissipation, while the latter describes
diffusion of it. According to the parameter values adopted
our Langevin simulation in Fig. 5, it is naturally expecte
that the dissipative-diffusion mechanism plays a crucial r
in reducing the oscillation amplitude of collective energ
and in realizing the steady energy flow from the collecti
system to the environment.

In order to explore this point, a time development of t
collective distribution functionrh(t) is shown in Figs. 6 and

FIG. 5. Time dependence of average collective energy simula
with Langevin equation~53! with g50.0033 andkT51.45. Param-
eters used in the mean-field potential are the same as in Fig.~c!.
Reference of abscissaT is the same as Fig. 1.
6-9
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FIG. 6. ~a! Probability distribution function of collective trajectories which is defined asPh(p8)5*rh(t)up5pm1p8dq and pm satisfies
]rh(t)/]pup5pm

50. The timeT is in unit of tcol ; ~b!–~f! the collective distribution function in (p,q) space atT520tcol ; T540tcol ; T
560tcol ; T580tcol ; andT5100tcol for Eh540, l50.005. The parameters are the same as in Fig. 1~c!.
e
ut

ti

ace

t

7 for two cases withl50.005~small coupling strength! and
0.02~large coupling strength!. Figures 6~a! and 7~a! illustrate
how a shape of the distribution functionrh(t) in the collec-
tive phase space disperses depending on time. In these
ures, an effect of the friction force should be observed wh
a location of the distribution function changes from the o
side ~higher energy! region to the inside~lower energy! re-
gion of the phase space. On the other hand, a dissipa
02111
fig-
n
-

ve

diffusion mechanism is studied from Figs. 6~a! and 7~a! by
observing how strongly a distribution function initially~at t
5tsw) centered at one point in the collective phase sp
disperses depending on time.

One may see that for the case withl50.005, rh(t) is
slightly enlarged from the initiald distribution, but is still
concentrated in a rather small region even att5100tcol . On
the other hand, for the case withl50.02, one may see tha
6-10
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FIG. 7. ~a! Probability distribution function of collective trajectories as defined in the caption of Fig. 6~a!, ~b!–~f! the collective
distribution function in (p,q) space atT520tcol ; T540tcol ; T560tcol ; T580tcol ; andT5100tcol for Eh540, l50.02. The parameters
are the same as in Fig. 1~c!.
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rh(t) quickly disperses after the coupling interaction
switched on and tends to cover a whole ring shape in
phase space att5100tcol .

Let us discuss a relation between the reduction mec
nism in the amplitude of collective energy and the dispers
property ofrh(t). Supposerh(t) does not show any stron
disperse property by almost keeping its originald function
shape; in this case, the effects coming fromHD(t) are con-
02111
e

a-
g

sidered to be small. The collective part of each trajectory
a time dependence expressed in Eq.~49! and its collective
energyHh has a time dependence given by Eq.~52!. Since
there is a well developedcoherenceamong the trajectories in
rh(t) when l50.005, the averaged collective energy^Hh&
over the bundle of trajectories still has a time depende
given by Eq.~52!. Consequently, one may not expect a r
duction of the oscillation amplitude in the collective ener
6-11
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as is shown in Fig. 1~a!.
When the distribution function tends to expand over

whole ring shape, the collective part of each trajectory is
expected to have the same time dependence as in Eq.~49!.
This is due to the effects coming from the stochastic fo
HD(t), and some trajectories have a chance to have an
vanced phase, whereas other trajectories have a reta
phase in comparison with the phase in Eq.~49!. According to
the decoherenteffects coming fromHD(t), the time depen-
dence of the collective energy for each trajectory in Eq.~49!
cancels out due to the randomness of the phases when
takes an average over the bundle of trajectories. This dep
ing mechanism is induced byHD(t), and is considered to b
the microscopic origin of the damping, i.e., the energy tra
fer from the collective system to the environment.

In order to compare the above mechanism with what h
pens in the phenomenological transport equation, the s
tion of the Langevin equation represented in the collect
phase space is shown in Fig. 8 for the cases withg
50.0033 andkT51.45. From this figure, one may unde
stand that the damping~a change of the distribution from th
outside to the inside of the phase space! as well as the dif-

FIG. 8. ~a! The probability distribution function of collective
trajectories as defined in the caption of Fig. 6~a!; ~b! collective
distribution function in (p,q) space att5100tcol simulated with
Langevin equation~53! with g50.0033 andkT51.45. The param-
eters used in mean-field potential are the same as in Fig. 1~c!.
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fusion ~an expansion of the distribution! are taking place so
as to reproduce the numerical result in Fig. 5. Even thou
the Langevin equation gives almost the same result as in F
1 in the macroscopic level, as is recognized by compari
Figs. 6 and 7 with Fig. 8, there are substantial differences
the microscopic-level dynamics. Namely, the distributio
functionrh(t) of our simulation evolves into the whole ring
shape while retaining almost the same initial energy regi
of the phase space, while the solution of the Langevin eq
tion evolves to a round shape while covering the whole e
ergetically allowed region. In the case of the Langevin sim
lation, the dissipation and dephasing mechanisms seem
help reproduce the result in Fig. 5, while the dephasi
mechanism is essential for the damping of the collective e
ergy in our microscopic simulation.

D. Linear and nonlinear coupling

According to the SCC method, which has been develop
to optimally divide the total space into the relevant and irre
evant subspaces, there should not be any linear coupling
teraction between the two spaces. In other words, one m
optimally divide the total system into the twodecoupledsub-
systems by using such a dynamical condition that the line
coupling between them should be eliminated. Since a ra
between the time scale of the well developed collective m
tion and that of the single-particle motion is typically les
than 1 order of magnitude in such a finite system as t
nucleus, it is a very important task to carefully study how th
relevant degrees of freedom are distinguished from the
maining degrees of freedom. On the basis of the SC
method, one may state that the separation of the total sys
into two subsystems coupled with a linear interaction has
physical meaning in a finite system, because a choice of
coordinate system, i.e., a separation between the relevant
irrelevant coordinates, remains arbitrary when a linear co
pling remains between them. This statement is easily rec
nized when one remembers that the harmonic oscillat
coupled with the linear interaction reduce to the uncoupl
harmonic oscillators by a proper choice of the coordina
system. Here, we do not intend to extend the above statem
for the infinite system, because there is a many order
magnitude difference between a time scale of the mac
scopic motion and that of the microscopic one, and there
huge numbers of degrees of freedom in the infinite irreleva
system.

In order to explore the different effects between the line
and nonlinear coupling interactions on the dissipative pr
cess, we have made a numerical simulation for theb-FPU
model described in Refs.@12,21–23#. The collectiveHh ,
intrinsic Hj and couplingHcoupl Hamiltonians are given as

Hh5
p2

2
1

v2q2

2
, p5q̇,

Hj5(
i 51

N pi
2

2
1(

i 52

N

W~qi2qi 21!1W~qN!,

~55!
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W~q!5
q4

4
1

q2

2
, pi5q̇i ,

Hcoupl5Dqq1 .

The parameters used in our numerical calculation areN
58, v50.2, andD50.02. A number of pseudo-particle
10 000. As an initial condition for each pseudo-particle,
take each oscillator energye510 with qi

(0)50 andq(0)50.
The numerical results are illustrated in Fig. 9. In Fig. 9~a!,

the coupling is switched on from the beginning, whereas
Fig. 9~b! it is switched on attsw5600t in , when a chaotic
situation has been well realized in the intrinsic system.
Fig. 9~a!, one may observe small energy transfer from
collective to the intrinsic system when the system reach
stationary state att'400t in . Namely^Hj& becomes a little
bit greater than 80 and̂Hh& less than 10. Before reachin
their stationary states, especially at the early staget
<100t in , there is a violent energy exchange between
collective and intrinsic systems. Since it is not allowed
apply any statistical treatment for the intrinsic system in t
early stage when no stationary state is realized, there m
be no reason to apply the Langevin type equation for a c

FIG. 9. Distribution of the partial Hamiltonian̂Hh&, ^Hj&,
^Hcoupl&, and^H& for the system described as Eq.~55!.
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in Fig. 9~a!. In other words, the above energy transfer m
not be understood in macroscopic terms. When one switc
on the coupling after the chaotic state has been realize
the intrinsic system, there is almost no energy dissipation
the collective motion as is seen from Fig. 9~b!.

An essential difference between the linear and nonlin
coupling cases may be understood as follows: As is s
from Eq. ~48!, the couplingHcoupl produces the mean-field
potential Hh(t) in the case of the nonlinear coupling, b
cause the second moment^( i 51

2 $qi
21pi

2%& has some value
when the intrinsic system reaches some stationary state.
recognized from Eq.~52! that this average effect plays
decisive role in defining an amount of transferred ene
from the collective system to the environment, like the fr
tion force. On the other hand,Hcoupl does not produce any
averaged effects on the collective motion in the case of lin
coupling, because there is a relation^qi&50 when the statis-
tical state is realized in the intrinsic system. With regards
the b-FPU model, one may conclude that the energy dis
pation phenomena may not be expected, although the o
main numerical results described in Ref.@12# have been re-
produced.

IV. CONCLUDING REMARKS

In the present paper, the transport phenomenon in a fi
system isdynamically established for the first time. It is
shown that the optimal separation between the relevant
irrelevant degrees of freedom performed by the se
consistent collective coordinate~SCC! method, which dy-
namically eliminates the linear coupling and leaves the n
linear coupling between two subsystems, is decisive
generating the transport phenomenon in the finite system
realize the transport phenomenon capable of being stu
within the fully microscopic coupled master equation~25!,
where the coupling between the relevant and irrelevant s
tems is divided into the averaged~mean-field! part and the
fluctuation part, we concentrate on a specific case where
relevant and irrelevant systems are evolved independent
the initial stage for the purpose of generating such a phys
situation where Conditions I, II, and III are satisfied as d
cussed in Sec. II C.

With the aid of numerical simulation, it has been clarifie
that the microscopic dephasing mechanism, which is cau
by the chaoticity of the irrelevant system, is responsible
the energy transfer from the collective system to the envir
ment. The established transport phenomenon is success
reproduced by the Langevin equation, whose potentialUmf is
determined by the mean field collective HamiltonianHh
1Hh(t). Even in this specific case, it has been clarified t
there are substantial differences in the micro-level mec
nism between the full microscopic description and t
Langevin description, although both descriptions well d
scribe the same macro-level transport phenomenon.

From our present work, one may conclude that there s
remains a number of subjects, such as:~a! What is the effect
of the number of degrees of freedom of irrelevant system;~b!
What will happen in the case where the intrinsic system is
the mixed situation of chaotic and regular motion, since
6-13
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TDHF manifold has a very rich structure as shown in o
previous paper@8#? ~c! Since there might be other variou
mechanisms responsible for the dissipation process, bes
the dephasing mechanism discussed in the present pap
more general form of coupling interaction should be cons
ered;~d! In LRT @13#, an appearance of macroscopic dam
ing is intimately related to the introduction of a finite wid
of the single-particle level or the continuum distribution
spectrum frequency. In the nonlinear interaction case,
have shown that the dissipative behavior is realized with
introducing such prescriptions. So it is worth clarifyin
whether or not the continuum distribution of spectrum f
A

v

ys

02111
r

es
r, a
-
-

e
t

-

quency can be obtained self-consistently in the case of n
linear interaction. The above-mentioned works are
progress.
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