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Dynamic realization of transport phenomenon in finite system
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Exploring the Fokker-Planck or Langevin type transport equation from the underlying dynamics, we study
by exploiting the numerical simulations whether or not one may expect dissipative motions in a Hamilton
system with finite degrees of freedom without introducing any statistical concept. It will be shown that the
macro-level transport phenomenon in a finite system camlymemically established from the underlying
Hamilton system, and the nonlinear coupling between two subsystems is decisive for generating the transport

phenomenon.
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[. INTRODUCTION bundle of trajectories. It has also been pointed out that the

response function shows quite different behavior from the

The Fokker-Planck or Langevin type equations have beewell known linear coupling case, when two systems are
widely applied to the macroscopic averaged motion in thecoupled with a nonlinear interaction. The above system with
vast fields of contemporary science. The evolution of thewo degrees of freedom is too simple to assign the relevant
early universe, that of the chemical reaction, many activadegree of freedom or to discuss its dissipation, because the
processes in the biological system, the fission and fusiorhaotic or statistical state can be realized by a system with at
processes in the nuclear system, and the measurement thedegst two degrees of freedom. In order to study the dissipa-

are typical examples among others. Although these processéign process microscopically, it is inevitable to treat a system
have been described successfully by the phenomenologic@lith more than two degrees of freedom, which is able to be

transport equation, there still remain some basic problemsjivided into two weakly coupled subsystems: one is com-
such as how to derive it from the fundamental level dynam'posed of at least two degrees of freedom and is regarded as

ics, how the statistical state is realized in the irrelevant suby, irrelevant system, whereas the rest are considered to be a
system, and why the irreversible macro-level process is geng|evant system

erated as a result of the reversible micro-level dynamics.

Several papers on this subj¢dt-19 have been published. ther how and why the dissipative process phenomenologi-

In many approachegl0,12,13, however, a division be- . ! A .
tween the relevant and irrelevant degrees of freedom is mac[:eaIIy described by the Langevin type equation is realized as

by hand, and the relevant system is assumed toniearly a result of the underlying dynamics, what kinds of necessary

coupled with the irrelevant reservoir. As is well known, the conditions there are in realizing the dissipative process, what

theoretical difficulties in deriving the irreversible process arekinds of dynamical relations there are between the micro-

drastically reduced, when the linear response théoRyT) is Ievell and phenome_nological—lgvel descriptions, and whether
adopted together with the irrelevant reservoir. From the macihe linear and nonlinear couplings between the relevant and
roscopic point of view, such a statistical approach seems tigrelevant systems generate some substantial differences in
be reasonable for the infinite system. In such an isolate¢he dissipation mechanism, by using specific model Hamil-
finite many_body quantum system as the nucleus where a§0nians. In Sec. I, we brlefly recapitulate the theory of the
sumption of a large number of degrees of freedom is nofiuclear coupled-master equatii for the sake of selfcon-
justified, and in a case when one intends to derive the phdainment. Starting from the most general coupled-master
nomenological transport equation from the fundamental levegquation, we try to derive the Fokker-Planck and Langevin
dynamics, it is not obvious whether or not one may introducdype equation, by clarifying necessary underlying conditions.
the reservoir for the irrelevant degrees of freedom, andDur purpose is to realize such a physical situation where
whether the total system is divided into the relevant andhese conditions are satisfied; in Sect. Ill, various numerical
irrelevant degrees of freedom by leaving a resulfargar  simulations will be performed for a system where a relevant
coupling between them. (collective harmonic oscillator is coupled with the irrelevant

To get a full understanding of the dynamical realization of(intrinsic) SU(3) model. After numerically realizing a macro-
the statistical state in a finite system, in our previous papelevel transport phenomena, we will try to reproduce it by
[8] an evolution process of a simple two-degrees of freedonusing a phenomenological Langevin equation, whose poten-
system has been studied by using a general microscopi@l is derived microscopically. By using th@ Fermi-Pasta-
transport theory7,9,16. It has been shown that the nonlin- Ulam (B8-FPU) model Hamiltonian, we will further explore
ear coupling between different degrees of freedom resportiow different transport phenomena will appear when the two
sible for generating a chaotic motion plays an important rolesystems are coupled with linear or nonlinear interactions.
in realizing a statistical state for a system described by &ec. IV is devoted to a summary and discussions.

The main objective of this paper is to study one step fur-
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Il. TRANSPORT EQUATION OF COLLECTIVE MOTION 5Hcoupl
—_— =0 6
A. Nuclear coupled master equation an fme* =0 ®)

Exploring the microscopic theory of nuclear large- .

amplitude collective dissipative motion, whose characteristi S Sat'SI'ted'bTh'S se_parattlont |fn the ollegreetsh of freedo(T_ W'”
energy per nucleon is much smaller than the Fermi energ urn out to be very important for exploring the energy dissi-

one may start with the time-dependent Hartree-Hd&kHF) ﬁggo;ngriﬁfﬁssicarrfogggI'c;er?]:)ﬁggam'cs between the collec-

theory. Since the basic equation of the TDHF theory is The t ¢ dissipati dd . h
known to be formally equivalent to the classical canonical 1€ transport, dissipative, and damping phenomena ap-
equations of motiorj17], the use of the TDHF theory en- pearing in the nuclear system may involve dynar_nlcs de-
ables us to investigate the basic ingredients of the nonline c_nb_ed by the wave packet f?thef. than that by the eigenstate.
nuclear dynamics in terms of the TDHF trajectories. The ithin the mean-field approximation, these phenomena may
TDHF equation is expressed as be expressed by the collective behavior of the ensemble of
TDHF trajectories, rather than the single trajectory. A differ-
ence between the dynamics described by the single trajectory
|®(1))=0, (1)  and by the bundle of trajectories might be related to the
controversy on the effects of one-body and two-body dissi-
where|®(t)) is the general time-dependent single Slater defations. o
terminant given by To deal with the ensemble of TDHF trajectories, we start
with the Liouville equation for the distribution function

(_ J .
(D (1)] o —H

_ e iEot
D (1)) =expliF}[@o>e'=0, p(t)=—iLp(t), L*=i{H,*}pg,

iﬁ=§ {f(halbl - (hba,l, (2) p(O)=p(7(t), n(t)* (1), E1)*), (7)

_ . which is equivalent to TDHF equatiofi). Here the symbol
where [®) denoAtes a HF stationary state, ami(,u {}pg denotes the Poisson bracket. Since we are interested in
=1,2,...m) andb/(i=1,2, ... n) mean the particle- and the time evolution of the bundle of TDHF trajectories, whose

hole-creation operators with respect ;). The HF Hamil-  bulk properties ought to be expressed by the relevant vari-
tonianH and the HF energ¥, are defined as ables alone, we introduce the reduced distribution functions
as

H=(D(()|A|D(1))—E,, Eo=(Do|H|Dy). 3
(P(H)[H|D(1))—Ey 0=(Do|H|Dy) 3 P (D=Tr, p(t),  pd)=Tr, p(t). ®

Here, the total distribution functiop(t) is normalized so as
to satisfy the relation

With the aid of the self-consistent collective coordinate
(SCO method[18], the whole system can be optimally di-
vided into the relevanfcollective and irrelevant(intrinsic)
degrees of freedom by introducing an optimal canonical co-
ordinate system called the dynamical canonical coordinate
(DCC) system for a given trajectory. That is, the total closed,ynere
systemzn® ¢ is dynamically divided into two subsystems
and ¢, whose optimal coordinate systems are expressed as .
Na» 75 :a=1,-- and&,, & a=1, --, respectively. The Tr=Tr, Tre, Tr,,z];[ f fdﬂadﬂa:
resulting Hamiltonian in the DCC system is expressed as

H=H,,+H+Hooupl (%) Tre=11 f f de, de* . (10

whereH , depends on the relevar,: on the irrelevant, and _ _ S _
Hcoupt ON both the relevant and irrelevant variables. TheWith the aid of the reduced distribution functiopg(t) and
TDHF equation(1) can then be formally expressed as a setp¢(t), one may decompose the Hamiltonian in E4). into
of canonical equations of motion in the classical mechanicghe form

in the TDHF phase spadsymplectic manifold as

Tr p(t)=1, 9

H:H77+ H§+ Hcoupl

iba=‘9—i, LT L =H,+H (1) +H+H () +Hy () —Eq(t),
ank 91a IEr 29
(5 H (0 =Tre Heouppe(),  HoD=Tr, Hogupp (1), an
Here, it is worth noting that the SCC method defines the
DCC system in order to eliminate tHmear coupling be- Have(t)=H (1) +H(1), Eo(t)=Tr Hegupp(1),
tween the relevant and irrelevant subsystems, i.e., the maxi-
mal decoupling conditiofi9] given by Ha(t)=Hcoup— Havel 1) + Eo(1).
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By exploiting the time-dependent projection operator methodbject. In this case, it is reasonable to assume that the effects
[19], one may decompose the distribution function into aon the relevant system coming from the irrelevant one are

separable part and a correlated one as mainly expressed by an averaged effect over the irrelevant
distribution function(Assumptiop Namely, the effects due
p(1)=ps(t) +pc(t), to the fluctuation parti ,(t) are assumed to be much smaller

than those coming frorAl ,,¢(t). Under this assumption, one

ps()=P(1)p(1)=p,(Dp D), p(t)=(1— P(t))P(t)i may introduce thenean-fieldpropagator

(12

t
whereP(t) is the time-dependent projection operator defined gmf(t,t’)=Texp{ _iJ [1-P(7)]L™(r)d7},
by t’

P(t)=p,(O)Tr,+p)Tre—p,()p)Tr, Ty (13) L™ty=LTO+LF), LY=L+ L),
From the Liouville equatiori7), one gets E?f(t)E£§+ Ly(t), (19)
ps(t)=—IP(t) Lps(t) —iP(t) Lpc(1), (14 which describes the major time evolution of the system,

) ) . while the fluctuation part is regarded as a perturbation. By
pc(t)=—i(1=P(1))Lps(t) =i (1—=P(1))Lpc(t). (15  further introducing the following propagators given by

By introducing t
Gmf(t,t’)ETexp[—if £mf(r)dr}=G,,(t,t’)G§(t,t’),
t/

t
g(t,t’)ETeXp[—if [1—P(r)]£dr], (16
t’ t
_ _ _ G,(t,t")=Tex —if LM(r)drt,
whereT denotes the time ordering operator, one obtains the t’
master equation fopg(t) as

t
po()= 1P (1) £pyt)~P(DLG(LL)pelt) Gg(t’t')ETeXp{_'Lﬁ fmf(T)dT]’ 2

t . .
_f dt’ P(t)Lg(t,t'){1—P(t")}Lpg(t'), (17)  one may prove that there is a relation
Y

Imi(t, T) LA(7) p (TP 7) = Cr(t, 7) LA(T) o (T) pe( 7).
wheret, stands for an initial time. As is easily proved, the m 4 7 ¢ m : 7 : (21

Liouvillian £ appearing inside the time integration in Eq.

(17) is replaced byl defined byLcoup’ =1{1Hcoupl:* trs- The coupling interaction is generally expressed as
Expressingog(t) and P(t) in terms ofp,(t) andp.(t), and
operating Ty, and Tt in Eq. (17), one obtains a coupled _ | |
master equation Heounl 7,6) = 20 A'(7)B'(€). (22
bﬂ(t)z —i[L,+L,(D)]p,1) For simplicity, we hereafter discard the summatloin the
. coupling. By introducing the generalized two-time correla-
I Trd Lyt Looupl9(t,t) pe(ty) tion and response functions, which have been caligthmi-
t cal correlation and response functions in Réf}, through
—f drTre LA(D)9(L,7) La(T)p,(T)pe(7),
4 d(t,1)=Tr,Ge(7,1)B(B—(B)) pe( 7), (23
(18)
X(tlT)ETrf{Gg(Tlt)BlB}PBpf(T)v (24)

p(t)=—i[Let Lt t)—iTr,[L:+ L t,t)po(t
pet) [Let L] A Let LeouplO(tt)pe(tr) with (B),=TrBp,(t), the master equation in E48) for the

t relevant degree of freedom is expressed as
= | d7 Tr, Ly()g(t, ) La(7)p,(T)pe7),

t .
| P o= =1L+ L, (0]p, ()= TrL L+ Looupld (L))
where £, (t)* ={H(t),*}pg. The coupled master equation -

(18) is still equivalent to the original Liouville equatiofT) XPc(t|)+J IdT)((t,t— H{A,G,(t,t—7)
and is not yet tractable. 0 K

t—t

B. Dynamical response and correlation functions X(A=(A)—)p,(t—7)}pgt f Idnj)(t,t— 7)
0
As was discussed in Rd#], a bundle of trajectories even
in the two degrees of freedom system may reach a statistical X{A,G,(t,t—7){A,p,(t—7)}pa}ps. (25

021116-3



YAN, SAKATA, ZHUO, AND WU PHYSICAL REVIEW E 63021116

with (A)=Tr, Ap,(t). Here, it should be noted that the wheret, denotes a time when the irrelevant system has
whole system is developed exactly upt{o In order to make reached its stationary state.

Eq. (25) applicable t; should be taken to be very close to a  Condition Ill. Suppose the irrelevant time scale is much
time when the irrelevant system approaches very near to itshorter than the relevant time scale. Under this assumption,
stationary statéi.e., the irrelevant system is very near to thethe response(t,t—7) and correlation functiong(t,t—7)
statistical state where one may safely make the assumption e regarded as being independent of the tinbecause in

be stated in next Sec. I)CIn order to analyze what happens Eq. (26) is regarded as describing a very slow time evolution
in the microscopic system, which is situated far from itsof the relevant motion. By introducing an approximate one-
stationary states, one has to stugft,,t,—7) and ¢(t, .t time response and correlation functions

—17) by changingt,. Since bothy(t,,t,—7) and ¢(t,,t,

—7) are strongly dependent dp, it is not easy to explore x(N=x(tt=7), ¢(1)=~¢(tt=7), (28)
the dynamical evolution of the system far from the stationaryOne may get
state. Therefore, to make E@5) applicable, we will exploit
the further assumptions. py()=—1[L,+ L (O] (1) =i Tr L+ Looupld(t,t)
C. Macroscopic transport equation ch(t|)+f de(T){A,exp(—iE;”fT)
0

In this subsection, we discuss how the macroscopic trans-
port equation is obtained from the fully microscopic master o
equation (25) by clearly itemizing necessary microscopic X(A=(A)—7)p (D }pet . d7¢(7)
conditions.

Condition |. Suppose the relevant distribution function X{A,{exp(—iEr;fT)A,pﬂ(t)}pB}pB. (29

p,(t—7) inside the time integration in E¢25 evolves ) )
through the mean-field HamiltoniaH , + H (t)*. Namely, Here it should be noted that such one-time response and
p”(t):G (t,t—7)p,(t—7), so that Eq(25) is reduced to  introduced in the LRT where the concepts of linear coupling
K 7 7 and of heat bath are adopted. Under the same assumption,
p (0)=—i[L,+L,(1)]p, (1) =i Tr{L,+ Loounld(t,t)) the upper limit of the integration—t, in Eq. (29) can be
7 T 7 €7 oo I extended to the infinity, because tér) and ¢(7) are as-
I _ B sumed to be very fast damping functions when it is measured
Xpelt) F fo drx(tt=7){AG,(t,t=7) in the relevant time scale.
Here, one may introduce the susceptibilitft)

t—t

t—t,
X A_ A _) t + d tyt
(A=(A)—,)-p,(D}ps fo Th( {(I)ZJ'thX(T), £(0)=0. (30)
0

= THALG,(t,t=7)A,p,(V)}pelpe.- (26) o _
Defining {={(«), one may further introduce another dy-

. o . N . namical functionc(t):
This condition is equivalent to thAssumptiordiscussed in ©

the previous subsection, because the fluctuation effects are  z(t)=[1—c(t)]¢, with c(0)=1, c()=0, (31

sufficiently small and are able to be treated as a perturbation

around the path generated by the mean-field HamiltoniaMvhich satisfies the following relation:

H,+H,(t), and are sufficient to be retained in Eg6) up to aL(t) ac(t)

the second order. ()= ——=—¢——=. (32)
Condition II. Suppose the irrelevant distribution function dt dt

pg(t) has already reached its time-independent stationar

statep,(to). According to our previous papé8], this situa- ots

tion is able to be realized even in the two-degrees of freedord

system. Under this assumption, the relevant mean-field Liou- ° _ i

villian £,,+ £,(t) becomes a time independent object. Under PO =—1[Ly+ Ly(O]p () =T TrL LF Looupl9(L,1))

Ynserting Eq.(32) into Eq.(29) and integrating by part, one

the same assumption, a time ordered integratioB jft,t") o
defined in Eq.(20) is performed and one may introduce Xpe(t) + LA (A= (A))p,(D}pet{ o drc(7)
. d
G, (Lt-1)=G (N=exp—iLMr}, LT=L, +L,(ty), x A,—[exq—iEr;fT)(A—<A>t)]p,](t)]
(27 dr PB

+ Jo drp(T{A{exp —i LT T)A,p ()} petps.
The same assumption has been introduced in a case of the linear
coupling[13]. (33

021116-4
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This equation is a Fokker-Planck type equation. The firsEq. (33) is reduced to
term on the right-hand side of E(B3) represents the contri-
butions from the mean-field part, and the second term a con- . .
tribution from the correlated FE)art of the distribution function Py ()= =1 Trd L+ Leouplg(tt) pe(ty)
at timet, . The last three terms represent contributions from
the dynamical fluctuation effects, . The friction as well as
fluctuation terms are supposed to emerge as a result of those
three terms. We will discuss the role of each term with our
numerical simulation in Sec. lII. ﬁ(P Q)+ 011(P Q)

At the end of this subsection, let us discuss how to obtain
the Langevin equation from our fully microscopic coupled d d
master equation, because it has been regarded as a final goal + ﬁaz(PaQ)ﬁ}Pn(t)- (38)
of the microscopic or dynamical approaches to justify the
phenomenological approaches. For the sake of simplicity, let . . )
us discuss a case where the interaction between relevant ahd discussed in Ref12], Eq. (38) results in the Langevin
irrelevant degrees of freedom has the following linear form:€quation with a form

1%
1 =L, T L,(1)+N(Q—(Q)y) Er)

Hcouplz)\Qzi i, Q: 1 UQ - Q+f(t) (39

m X

by introducing a concept of mechanical temperature. The

above derivation of the Langevin equation is still too formal
A=\\Q, B= \/XZ i, to be applicable for the general cases. However it might be

' naturally expected that Conditions I, Il, and Ill are met in the

1 i actual dynamical processes.
Q= E(Wr 7*), P= E(”l*_ 7),
Ill. DYNAMICAL SIMULATION ON NONLINEAR
NUCLEAR SYSTEM

1 :
q; :E(gi +&), p :é(gi* —&). (39 A. Microscopic model

The system considered in our numerical calculation is
Here we assume that the relevant system consists of or@mposed of a collective degree of freedom coupled to in-
degree of freedom described ByQ. Even though we apply trinsic degrees of freedom through weak interaction, which
the linear coupling form, the generalization for the case withsimulates a nuclear system. The collective system describing,
more general nonlinear coupling is straightforward. In ordere.g., the giant resonance is represented by the harmonic os-
to evaluate Eq(33), one has to calculate cillator given by

Q(1)=exp(—iL]'")Q, (35)

whereQ(7) is a phase space image Qfthrough the back-
ward evolution. Thus the Poisson brack€X(7),p,,(t)}pg in
Eq. (33) is expressed as

p2 1
H,(a.p) = 57 + s Mw?q? (40)

and the intrinsic system mimicking the hot nucleus is de-
scribed by the modified SI3) model Hamiltoniarj20] given

aQ(7) dp,(1)  IQ(7) dp,(t) by
QU= g~ 5p a5

2 2
(36) ) 1 o
:Zo €Kit 35 21 Vi{KioKio+H.c};
By introducing the following quantities: = =
P,Q)=\ f “dr(n 2D :
1(P,Q)= 0 () J0Q '’ Kij :mE:l Cierijr (41)
B Q(T) .
ay(P,Q)=—\ dT(f)(T) whereC/, andC;,, represent the fermion creation and anni-
hilation operators There are thréefold degenerate levels
Q( ) with eg<e;<e,. In the case with an eve particle system,
-

(37) the TDHF theory gives a classical Hamiltonian with two
degrees of freedom as

B(P,Q)= A{f drc(7)

021116-5
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He(d1,P1,02,P2) distribution function is given by th& function centered at
g(0)=0 andp(0), p(0) being defined by a given collective
energyE,, together withq(0)=0. The distribution function
in Eq. ( 44) defines an ensemble of the system, each member
N—1 1 of which is cqmpo;ed_ of a cpllective degree of freedom
- W\/l(q‘ll_ pl) + 5(62_ €0)(95+p3) coupled to a smgle |nFr|n3|c'traJectory. o o
In our numerical simulation, the coupling interaction is
1 N—1 not activated at an initial stage. In the beginning, the cou-
+ EVZ(N—l)(qg—pg)— sz(q‘z‘—pg) pling between the collective and intrinsic systems is
switched off, and they evolve independently. Namely, the

1 2, 2 1 2 2
:5(61_60)(Q1+p1)+EVl(N_l)(%_pl)

N—1 s o o o collective system evolves regularly whereas, as discussed in
+ 2N [ Val@i—po)(az+p2) Sec. Il B, the intrinsic system tends to reach its time-
independent stationary stdighaotic objedt After the statis-
—V,(q2+p2)(g3—p3)]. (42)  tical state has been realized in the intrinsic system, the cou-

_ _ pling interaction is activated. A quantity, in Eq. (43)
In our nur;encal calculation, the parameters used Mre genotes a value of the collective trajectapat the switch on
=18.75, 0 =0.0064,60=0, e, =1, €,=2, N=30, andV;  time. One purpose of introducingy, is to insert the coupling
=—0.07. In this case, the collective time scalg, charac-  ,gjapatically, and to conserve the total energy before and
terized by the harmonic oscillator in EGLO) and the intrin- after the switch on time(Hereafter,r.,, denotes the moment

.S'f.“”?e s|_<|:a|e_r|itn charapterllzzefzby trt1.ef_harmon|c| ptgrt of the when the interaction is switched on, and in our numerical
intrinsic Hamiltonian in Eq42) satisfies a relationrg, calculationr,, is set to berg,=127.y.)

~ 107, N . . . Here it is worth noting why we let the two systems evolve
For the coupling interaction, we use the following nonlin- . -~ .
. : : independently at the initial stage. As is well known, the er-
ear interaction given by . . : N :
godic and irreversible property of the intrinsic system is as-
sumed in the conventional approach, and the intrinsic system
for the infinite system is usually represented by the time
=N(g—0n)>2 24 p?
Heoup=A (A~ o) Z’l {7 +pi}- (43 independent canonical ensemble. In flréte system, how-
ever, one has to explore whether or not the intrinsic system

. . . . L tends to reach such a state that is effectively replaced by a
A physical meaning of introducing a quantitly in Eq. (43) statistical object, how it evolves after the coupling interac-

will be d|scus_sed at the end of this subsection as well as thﬁon is switched on, and what its final state looks like.
next subsection.

In performing the numerical simulation, the time evolu- As discussed at the end of Sec. Il B, itis not easy to apply

. S . ) X Eq. (25) for analyzing what happens in the dynamical micro-
tion of the distribution functiorp(t) is evaluated by using S(?op()ic)system gvhicgh is in thepgeneral situai/ion Our present
the pseudo-particle method as ’ '

primary aim is to microscopically generate such a transport
N2 phenomenon that might be understood in terms of the Lange-
1 & vin equation. Namely, we have to construct such a micro-
p(= N_p ngl iH1 8(Gi = qin(1)) scopic situation that seems to satisfy Conditions |, Il, and 11l
discussed in Sec. Il C. In this context, we first let the intrinsic
X 8(pi— Pi.n(t))8(0—0an(t))S(p—pn(t)), (44  system reach a chaotic situation in a dynamical way, until the
ergodic and irreversible property are well realizéyhami-
where N, means the total number of pseudoparticles. Theeally. In the next subsection, it will be shown that the above
collective coordinates,(t) andp,(t), and the intrinsic co- Microscopic situation is indeed realizegnamicallyfor the
ordinatesy; ,(t) andp; ,(t) determine a phase space point of intrinsic system Eq(42).
the nth pseudo-particle at time whose time dependence is ~ Our attention is mainly focused on examining the energy

described by the canonical equations of motion given by interchange between these two systems, and the final states
these two systems can reach and their interaction depen-
JH ) oH . OH ) JH dence. For studying the energy interchange, we make nu-
pi= o} p= merical calculations for the following cases. The collective
energy is much larger than, comparable to, and much smaller
than the intrinsic energy. Namely, the collective energy is
H=H,(d,p) +He(A1,P1,02,P2) + Heoupi: (45 chosen to beE, =20, 40 and 60, whereas the intrinsic en-
ergy is fixed atE,=40. HereE, =40 is chosen, because the
We use the fourth order Runge-Kutta method for integratingphase space of the intrinsic system is almost covered by the
the canonical equations of motion ai, is chosen to be chaotic sea at this energy. In order to examine the interaction
10000. The initial condition for the intrinsic distribution dependence of the final state, the interaction strength param-
function is given by a uniform distribution in a tiny region of eter\ is chosen to be 0.00&elatively weal, 0.01 and 0.02
the stochastic sea as stated in R8f. That for the collective  (relatively strong.

2
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FIG. 1. Time dependence of the averaged partial Hamiltogip), (H), (Hcoup and the total HamiltoniagH) for E, =40, E,
=40 and(a) A=0.005;(b) A=0.01;(c) A=0.02 and(d) A=0.03. Solid line refers t¢H ,); long dashed line refers tH,); short dashed
line refers to(Hq and dotted line refers t0H). The absciss@ denotes a time in units af, which is a characteristic periodic time of

the collective oscillator.

B. Energy interchange between the collective
and intrinsic systems

Figures Za) and Zb) represent the numerical results for
the cases withE, =20 and 60, showing almost the same

Figures 1a)—1(d) show the time-dependent averaged val-fesult as for the case fd,=40. From the above numerical

ues of the partial HamiltoniaH ), (H,) and(H ) and
the total Hamiltonian(H) defined through

2
)= [ xpvdadpl] aaap. @

simulation, one may see that the energy is dissipated from
the collective to an “environment,” when the intrinsic sys-
tem and the coupling interaction are regarded as an environ-
ment. Before understanding the above energy transfer in
terms of the phenomenological Langevin equation, it is im-
portant to microscopically explore what happens in the in-

for the case W|t[‘E —40 One may see that the ma|n Changetr|ns|c System when the collective SyStem is attached to the
occurs in the collective energy as well as the interaction enintrinsic system through the coupling interaction.

In Fig. 3, a time dependence of the variance of the intrin-

ergy, but not in the intrinsic energy. When one precisely
looks for the independent trajectories of the bundle, the colSIC momentun’(p1> is shown. The other intrinsic variances
lective, intrinsic and interaction energies of each trajector)(ql> (g3) and(p3) show almost the same time dependence
are changing in time in accordance with the usual Hamiltoras in Fig. 3. As discussed in our previous paf&r an ap-
system. Since the intrinsic system has already reached sorpearance of some chaotic state is expected when the variance
stochastic state when the interaction is switched on, a timbas reached its stationary value. Since the variance of the
dependence of the intrinsic energy for each trajectory is carnintrinsic system reaches some stationary value befgyand

celed out when one takes an average over many trajectorisince the intrinsic system is regarded as being in the chaotic
of the bundle. For a case with small interaction strength ( state, the coupling interaction is activatedrgj in our simu-
=0.005), the collective energy oscillates for a long time andation. After r,= 127, its value remains almost the same
seems not to reach any saturated value. In the case of reltsr the small interaction strength case, and quickly reaches a

tively large interaction strengti\(~0.02), it will reach some
time-independent value.

little bit larger stationary value for the large coupling
strength caseN=0.02). This small increase corresponds to a
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80 - - . - tical object before and after the coupling interaction is acti-
70 | (@) | vated. This conclusion provides us with the dynamical
60 foundation for understanding the statistical ansatz adopted in
the conventional transport theory, where the irrelevant sys-
50 1 tem is always regarded as a time-independent statistical ob-
B 40 ject.
E 30 | Since the variance has reached its stationary value shortly
after 7, it is reasonable to introduce the following time
20 independent quantity:
10 5
° (P +ar)= J 11 dpidafpf+aitpn. (47
_10 1 1 L 1 =
0 20 40 60 80 100 _ _ S
T In accordance with the mean-field Liouvillian in EO),
one may introduce théime-independentollective mean-
120 . . , . field Hamiltonian as
100 H77+H1](t)|t>rsw
2
80 ® 1 p 1
= onp 5 M@sa*+A(g—do) 22 (p7+ap).
B 60 ]
()

Except for the effects coming from the fluctuation part
H (1), the collective trajectory is supposed to be described
by the mean-field Hamiltonian in E¢48) after the coupling
interaction is switched on. The solution of E@8) is ex-

0 20 40 60 80 100 pressed as

g=Acosw(t— 1), P=—MoAsinw(t—r1g,),

FIG. 2. Time dependence of the averaged partial Hamiltonian (49
for: (a) E,=20, E,=40, A\=0.02; (b) E,, =60, E,=40, A\=0.02.
Reference of lines and abscisBas the same as in Fig. 1. where

2
slight enlargement of the chaotic sea in the intrinsic phase 0= witw?, o= _<p| +0?), A:qo(ﬂ) ,
space. Practically, the values of variances are regarded to be w
constant before and after,,. (50)

From our numerical simulation, one may deduce such the amplitudeA being fixed by using the initial condition
conclusion that the intrinsic system even with only two de- (7o) =00 . In accordance with this initial condition, there
SW

grees of freedom can be treated as a time independent stat%,Olols the following energy conservation before and aftgy

as

10

M 2 2
H1]|t=‘rSW70=H7]+H77(t)|t=‘rsw+0=7q0w0- (51)

% L ‘ In order to understand an oscillating property of the col-
S o1 f’ ARy " ! lective energy observed in Figs. 1 and 2, let us substitute the
g solution in Eq.(49) into the collective HamiltoniarH
= Then one gets

0.01

H = G| 1-4— oro °sm4 St (. (52
0.001 . . . .
0 20 40 60 80 100

In Fig. 4, the numerical result of Eq52) is shown to-
gether with the exact simulated result. As is clearly recog-
FIG. 3. Time-dependence of variance pf (defined as(p?  nized from Fig. 4 and Eq( 52), the mean-field description

—(p}))) for E,=40, E,=40 and\ =0.02. Coupling is switched on can well reproduce the oscillating propeiihe amplitude,
at 7o,= 127,. Reference of abscisdais the same as in Fig. 1.  the central energy of the oscillation as well as the frequency

T
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FIG. 5. Time dependence of average collective energy simulated
FIG. 4. Time dependence of average collective enédgshed it Langevin equatiori53) with y=0.0033 andT= 1.45. Param-
line) H,, in Eq. (52), in which the mean-field energy of the coupling eters used in the mean-field potential are the same as in . 1
interaction is considered as shown in E48), together with the  Reference of abscissais the same as Fig. 1.
exact simulated resulisolid line). Parameters used in the mean-
field potential are the same as in Figc]l Reference of abscis§a As is understood from Fig. 5, the Langevin equation re-
is the same as Fig. 1. produces the energy transfer from the collective system to
the environment quite well. This means that our dynamical
of the collective energyH ), whereas it cannot reproduce a simylation shown in Fig. 1 is satisfactorily linked with the
reduction mechanism of the amplitude. That is the meangonyentional transport equation, and our schematic model
field Hamiltonian cannot describe the dissipation processHamiltonian introduced by Eq€40), (42) and (43) is suc-
More precisely, one may see that the mean-field approximasessfully considered as a dynamiemalogueof the Brown-
tion provides us with decisive information on the following jan particle coupled with the classical statistical system.
two points: (a) the amplitudeA of the collective energy is Based on the above analogy and on E8) and (53), one
determined mainly by the coupling interaction stren§ths  may learn the collective degree of freedom is subject to both
well as the averaged properties of the intrinsic systemyn average force coming from the mean-field Hamiltonian in
(SF_1p?+af); (b) the frequencyw is related with the char- Eq. (48) and the fluctuation terrhi . . Namely, the fluctua-
acteristic frequency of the collective oscillatep, the cou-  tion H, described by the last three terms on the right hand
pling interaction strengti. and the averaged properties of side of Eq.(33) is responsible for not only the damping of
intrinsic system(=7_,pZ+q?). From the above discussion the oscillation amplitude but also for the dissipative energy
and from Figs. 1 and 2, the dissipation process should bffow from the collective system to the environment.
attributed to the fluctuation effects coming fray, . At the end of this subsection, it should be noted that our
Before discussing the microscopic dynamics responsiblehoice of y and kT does not satisfy the fluctuation-
for the damping and diffusion process, let us apply the phesissipation theorem. This means that our simulated dissipa-
nomenological transport equation to our present simulatedve phenomenon is not the same as the usual damping phe-
process. Let us suppose that the collective motion will benomena described within the LRT. Since our simulated
subject to both a friction force and a random force, and canlissipation phenomenon is induced not by the linear cou-
be described by the Langevin equation. A simple Langevirpling but by the nonlinear coupling, there still remain inter-
equation is given by esting questions for comprehensively understanding the mac-
roscopic transport phenomena.

. oU™(q) .
Mg+ aq +ya=1(v), (53 C. Microscopic origin of damping and diffusion mechanism
o ) ) In the Langevin equation, there are two important forces:
whereU™(q) represents the potential partldf,+H,(t) in  the friction force and the random force. The former describes
Eq. (48) and y the friction strength parameter. A function the average effect on the collective degree of freedom caus-
f(t) represents the random force and, in our calculation, it isng an irreversible dissipation, while the latter describes the

taken to be the Gaussian white noise characterized by thgiffusion of it. According to the parameter values adopted in

following moments: our Langevin simulation in Fig. 5, it is naturally expected
that the dissipative-diffusion mechanism plays a crucial role
(f(1))=0, (f(H)f(s))=kTs(t—s). (54 in reducing the oscillation amplitude of collective energy,

and in realizing the steady energy flow from the collective
The numerical result for Eq53) is shown in Fig. 5 with the  system to the environment.
parametersy=0.0033 andkT=1.45. The parameters ap- In order to explore this point, a time development of the
pearing inU™(q) are the same as in Fig(d. collective distribution functiom,(t) is shown in Figs. 6 and
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FIG. 6. (a) Probability distribution function of collective trajectories which is definedDQ,(sp’)=fp,/(t)|p:pm+p,dq and p,,, satisfies
&pﬂ(t)/3p|p:pm=0. The timeT is in unit of 7.y ; (b)—(f) the collective distribution function ing,q) space afl =207y,; T=407¢,; T
=60r¢,; T=807,; andT=100r, for E, =40, A=0.005. The parameters are the same as in K. 1

7 for two cases witth =0.005(small coupling strengdhand  diffusion mechanism is studied from Figsa@éand 7a) by
0.02(large coupling strengihFigures 6a) and qa) illustrate  observing how strongly a distribution function initialigt t

how a shape of the distribution functign,(t) in the collec- = 75,) centered at one point in the collective phase space
tive phase space disperses depending on time. In these fidisperses depending on time.

ures, an effect of the friction force should be observed when One may see that for the case with=0.005, p,(t) is

a location of the distribution function changes from the out-slightly enlarged from the initiab distribution, but is still
side (higher energyregion to the insiddlower energy re-  concentrated in a rather small region even=ai00r.,. On
gion of the phase space. On the other hand, a dissipatihe other hand, for the case wikth=0.02, one may see that
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FIG. 7. (a) Probability distribution function of collective trajectories as defined in the caption of Fa, 6)—(f) the collective
distribution function in f,q) space all =20r7.,; T=407y; T=607c; T=807y,; andT=100r., for E, =40, A\=0.02. The parameters
are the same as in Fig(d.

p,(t) quickly disperses after the coupling interaction issidered to be small. The collective part of each trajectory has
switched on and tends to cover a whole ring shape in tha time dependence expressed in ) and its collective
phase space at= 1007. energyH,, has a time dependence given by E82). Since

Let us discuss a relation between the reduction mechahere is a well developetbherenceamong the trajectories in
nism in the amplitude of collective energy and the dispersing,(t) when\ =0.005, the averaged collective ener@y,)
property ofp,(t). Supposep,(t) does not show any strong over the bundle of trajectories still has a time dependence
disperse property by almost keeping its origidafunction  given by Eq.(52). Consequently, one may not expect a re-
shape; in this case, the effects coming freip(t) are con-  duction of the oscillation amplitude in the collective energy
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fusion (an expansion of the distributiprare taking place so

0.14 as to reproduce the numerical result in Fig. 5. Even though
o 0121 the Langevin equation gives almost the same result as in Fig.
g 1 in the macroscopic level, as is recognized by comparing
& 01f Figs. 6 and 7 with Fig. 8, there are substantial differences in
g 008 + the microscopic-level dynamics. Namely, the distribution
I functionp,(t) of our simulation evolves into the whole ring
3_73_., 0.06 shape while retaining almost the same initial energy region
8 of the phase space, while the solution of the Langevin equa-
£ oo4r tion evolves to a round sha hil ing the whol -
pe while covering the whole en
0.02 | ergetically allowed region. In the case of the Langevin simu-
lation, the dissipation and dephasing mechanisms seem to
0_15 10 5 0 s 10 15 help reproduce the result in Fig. 5, while the dephasing
p mechanism is essential for the damping of the collective en-
ergy in our microscopic simulation.
10 ‘ . : .
b - D. Linear and nonlinear coupling
» According to the SCC method, which has been developed
5f ] to optimally divide the total space into the relevant and irrel-
evant subspaces, there should not be any linear coupling in-
teraction between the two spaces. In other words, one may
QO of 1 optimally divide the total system into the tva@coupledsub-
systems by using such a dynamical condition that the linear
coupling between them should be eliminated. Since a ratio
St ] between the time scale of the well developed collective mo-
tion and that of the single-particle motion is typically less
T P T than 1 order of magnitude in such a finite system as the
-10 e nucleus, it is a very important task to carefully study how the
-10 -5 0 5 10 relevant degrees of freedom are distinguished from the re-
P maining degrees of freedom. On the basis of the SCC

method, one may state that the separation of the total system
trajectories as defined in the caption of Figa)6 (b) collective into two subsystems coupled with a linear interaction has no

distribution function in ,q) space at=100r., simulated with ~ Physical meaning in a finite system, because a choice of the
Langevin equatiori53) with y=0.0033 anckT=1.45. The param- Ccoordinate system, i.e., a separation between the relevant and

FIG. 8. (8 The probability distribution function of collective

eters used in mean-field potential are the same as in Fy. 1 irrelevant coordinates, remains arbitrary when a linear cou-
pling remains between them. This statement is easily recog-
as is shown in Fig. (B). nized when one remembers that the harmonic oscillators

When the distribution function tends to expand over thecoupled with the linear interaction reduce to the uncoupled
whole ring shape, the collective part of each trajectory is noharmonic oscillators by a proper choice of the coordinate
expected to have the same time dependence as if4Hy.  system. Here, we do not intend to extend the above statement
This is due to the effects coming from the stochastic forcefor the infinite system, because there is a many order of
H,(t), and some trajectories have a chance to have an aghagnitude difference between a time scale of the macro-
vanced phase, whereas other trajectories have a retardedopic motion and that of the microscopic one, and there are
phase in comparison with the phase in E). Accordingto  huge numbers of degrees of freedom in the infinite irrelevant
the decoherenteffects coming fromH,(t), the time depen-  system.
dence of the collective energy for each trajectory in @§) In order to explore the different effects between the linear
cancels out due to the randomness of the phases when oafd nonlinear coupling interactions on the dissipative pro-
takes an average over the bundle of trajectories. This dephasess, we have made a numerical simulation for SREPU
ing mechanism is induced by, (t), and is considered to be model described in Refd12,21-23. The collectiveH,,
the microscopic origin of the damping, i.e., the energy transintrinsic H; and couplingH ., Hamiltonians are given as
fer from the collective system to the environment.

In order to compare the above mechanism with what hap- P>  w’g’ .
pens in the phenomenological transport equation, the solu- H’?:7+ 2 P=4
tion of the Langevin equation represented in the collective
phase space is shown in Fig. 8 for the cases wjth

=0.0033 andkT=1.45. From this figure, one may under- N p? N
stand that the dampin@ change of the distribution from the ng_E ?' + 2 W(g;— 1) +W(dn),
outside to the inside of the phase spaas well as the dif- i=1 =2

(59
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in Fig. 9a). In other words, the above energy transfer may
not be understood in macroscopic terms. When one switches
on the coupling after the chaotic state has been realized in
the intrinsic system, there is almost no energy dissipation in
the collective motion as is seen from Figb®

An essential difference between the linear and nonlinear
coupling cases may be understood as follows: As is seen
from Eq. (48), the couplingH ¢, produces the mean-field
potentialH,(t) in the case of the nonlinear coupling, be-
cause the second momef®? ,{q’+p?}) has some value
when the intrinsic system reaches some stationary state. It is
recognized from Eq(52) that this average effect plays a
decisive role in defining an amount of transferred energy
from the collective system to the environment, like the fric-
tion force. On the other hand,,, does not produce any
averaged effects on the collective motion in the case of linear
coupling, because there is a relatign) =0 when the statis-
tical state is realized in the intrinsic system. With regards to
the B-FPU model, one may conclude that the energy dissi-
pation phenomena may not be expected, although the other
main numerical results described in REf2] have been re-
produced.

IV. CONCLUDING REMARKS

In the present paper, the transport phenomenon in a finite
system isdynamically established for the first time. It is
shown that the optimal separation between the relevant and
irrelevant degrees of freedom performed by the self-
consistent collective coordinatt&SCCO method, which dy-
namically eliminates the linear coupling and leaves the non-
linear coupling between two subsystems, is decisive for
generating the transport phenomenon in the finite system. To
realize the transport phenomenon capable of being studied
within the fully microscopic coupled master equati(2b),
where the coupling between the relevant and irrelevant sys-
tems is divided into the averagdthean-field part and the
fluctuation part, we concentrate on a specific case where the
relevant and irrelevant systems are evolved independently at
the initial stage for the purpose of generating such a physical
situation where Conditions 1, 1, and Il are satisfied as dis-

The parameters used in our numerical calculation ldre cyssed in Sec. Il C.

=8, w=0.2, andA=0.02. A number of pseudo-particle is

With the aid of numerical simulation, it has been clarified

10 000. As an initial condition for each pseudo-particle, wethat the microscopic dephasing mechanism, which is caused

take each oscillator energy=10 with q/¥=0 andq(®=0.
The numerical results are illustrated in Fig. 9. In Figa)9

by the chaoticity of the irrelevant system, is responsible for
the energy transfer from the collective system to the environ-

the coupling is switched on from the beginning, whereas imrment. The established transport phenomenon is successfully

Fig. 9b) it is switched on atrg,=600r;,, when a chaotic

reproduced by the Langevin equation, whose potebtilis

situation has been well realized in the intrinsic system. Indetermined by the mean field collective Hamiltoni
Fig. 9@), one may observe small energy transfer from the+H,(t). Even in this specific case, it has been clarified that
collective to the intrinsic system when the system reach itshere are substantial differences in the micro-level mecha-

stationary state at~400r,,. Namely(H,) becomes a little

nism between the full microscopic description and the

bit greater than 80 an¢H ) less than 10. Before reaching Langevin description, although both descriptions well de-
their stationary states, especially at the early stage at scribe the same macro-level transport phenomenon.
=<100r,,, there is a violent energy exchange between the From our present work, one may conclude that there still
collective and intrinsic systems. Since it is not allowed toremains a number of subjects, such @sWhat is the effect
apply any statistical treatment for the intrinsic system in thisof the number of degrees of freedom of irrelevant systén;
early stage when no stationary state is realized, there mighwhat will happen in the case where the intrinsic system is in
be no reason to apply the Langevin type equation for a casie mixed situation of chaotic and regular motion, since its
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TDHF manifold has a very rich structure as shown in ourquency can be obtained self-consistently in the case of non-
previous papef8]? (c) Since there might be other various linear interaction. The above-mentioned works are in
mechanisms responsible for the dissipation process, besidpsogress.
the dephasing mechanism discussed in the present paper, a

more general form of coupling interaction should be consid-

ered;(d) In LRT [13], an appearance of macroscopic damp-

ing is intimately related to the introduction of a finite width ~ We are deeply indebted to Dr. Y. Hashimoto and Dr. Z.
of the single-particle level or the continuum distribution of Li for their valuable discussions. This work was partially
spectrum frequency. In the nonlinear interaction case, wsupported by the Japan-China cooperative research program
have shown that the dissipative behavior is realized withoubrganized by the Japan Society for the Promotion of Science
introducing such prescriptions. So it is worth clarifying and by the National Natural Science Foundation of China
whether or not the continuum distribution of spectrum fre-under Grant No. 19975073.
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